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ABSTRACT 
 

 In this article, we propose a new three-parameter Fréchet distribution named the Odd 

Lindley Fréchet distribution. The new model can be expressed as a linear mixture of 

Fréchet densities. We provide some of its mathematical properties. Theestimation of the 

model parameters is performed by the maximum likelihood method.The importance and 

usefulness of the proposed distribution for modeling data are illustrated using two real 

data sets by comparison with some other extentions of the Fréchet distribution. 
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1. INTRODUCTION 
 

 The Fréchet distribution, was introduced by Fréchet (1924), (also known as type II 

extreme value distribution) is one of the important distributions in extreme value theory 

and it has applications ranging from accelerated life testing through to earthquakes, 

floods, horse racing, rainfall, queues in supermarkets, wind speeds and sea waves. 

Further details about the Fréchet distribution and its applications can be explored in Kotz 

and Nadarajah (2000), Harlow (2002), Zaharim et al. (2009) and Mubarak (2011). 
 

 The statistical literature contains many generalizations of the Fréchet distribution. For 

example, the exponentiated Fréchet (Nadarajah and Kotz, 2003), the beta Fréchet 

(Nadarajah and Gupta, 2004 and Barreto-Souza et al., 2011), the transmuted Fréchet 

(Mahmoud and Mandouh, 2013), the Marshall-Olkin Fréchet (Krishna et al., 2013), the 

gamma extended Fréchet (Silva et al., 2013), the transmuted exponentiated Fréchet 

(Elbatal et al., 2014), the transmuted Marshall-Olkin Fréchet (Afify et al., 2015), the 
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Weibull Fréchet (Afify et al., 2016), the beta exponential Fréchet (Mead et al., 2017) and 

the modified Fréchet (Tablada and Cordeiro, 2017) distributions. 
 

 The cumulative distribution function (cdf) of the Fréchet distribution is given by  

(for    )  
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 The corresponding probability density function (pdf) of (1) is  
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where     is a scale parameter and     is a shape parameter. 
 

 Let  (   ) and  (   ) denote the density and cumulative functions of a baseline 

model with parameter vector  . Gomes-Silva et al. (2017) proposed a new family of 

distribution called the Odd Lindley-G (OLi-G) family. 
 

 The cdf of the OLi-G family is given by  
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where   is a positive shape parameter. 
 

 An easy interpretation of the above family can be given as follows. Let   be a  

lifetime random variable having a certain a continuous cdf  (   ). The odds ratio  

that an individual (or component) following the lifetime   will die (failure) at time   is 

 (   )  (   ). Consider that the variability of this odds of death is represented by the 

random variable   and assume that it follows the Lindley model with scale  . We can 

write Then, we have  (   )   [   (   )  (   )]   (     ), which is just 

given by (3). 
 

 The OLi-G density function is given by  
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 A random variable   with pdf (4) is denoted by   OLi-G(   ). 
 

 The rest of this article is organized as follows. Section 2 is devoted to define the 

OLiFr distribution and provide some plots for its pdf and hazard rate function (hrf). 

Section 3 deals with the derivation of a useful linear representation for the OLiFr density. 

In Section 4, we obtain some mathematical properties of the OLiFr distribution  

including ordinary and incomplete moments, moment generating function and order 

statistics. The maximum likelihood estimates (MLEs) of the unknown parameters  

are provided in Section 5. In Section 6, the flexibility of the OLiFr distribution is  

proved empirically by means of two applications to real data. Finally, we provide some 

conclusions in Section 7. 
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2. THE OLiFr DISTRIBUTION 
 

 In this section, we define the OLiFr distribution. By inserting the cdf (1) into equation 

(3), we obtain the cdf of OLiFr distribution (for    )  
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 The pdf corresponding to (5) is  
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where   is a scale parameter and   and   are shape parameters representing the different 

patterns of the OLiFr distribution. Henceforth, we denote a random variable   having pdf 

(6) by   OLiFr(     ). 
 

 The hrf and cumulative hazard rate function (chrf) of   are defined by  
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respectively. Figure 1 shows some plots of the OLiFr density for selected values of     

and  . The density plots indicate that the OLiFr distribution can be skewed to the left and 

to the right with small and large values for the skewness and kurtosis measures. The plots 

of the OLiFr hrf for some parameter values given in Figure 2 reveal that this function can 

be unimodal, decreasing or increasing, depending on the parameter values. Moreover, 

Figure 3 displays the hrf regions of OLiFr distribution for    . 

 

3. LINEAR REPRESENTATION 
 

 In this section, we derive a useful expansion for the OLiFr density function in terms 

of Fréchet densities. 
 

 Applying the exponential series, the OLi-G pdf in equation (4.4), reduces to  
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 The generalized binomial expansion is defined by  
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Figure 1: The pdf Plots of the OLiFr Distribution for Some Parameter Values 
 

  

Figure 2: The hrf Plots of the OLiFr Distribution for Some Parameter Values 
 

 
Figure 3: The hrf Regions of the OLiFr Distribution for    .  
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 Applying the above expansion to ,   ( )-    , we can write  
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 Taking  ( ) and  ( ) in the last equation to be the cdf and pdf of the Fréchet 

distribution in equations (1) and (2), we have  
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 Then, the pdf of the OLiFr can be rewritten as  
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and       ( ) is the Fréchet density with shape parameter   and scale parameter 

 (     )   . Equation (7) reveals that the OLiFr density can be written as a linear 

combination of Fréchet densities. So, several of its mathematical properties can be 

obtained from those of the Fréchet distribution and equation (7). 
 

 Let   be a random variable having the Fréchet distribution (2) with parameters  

  and  . For    , the  th ordinary and incomplete moments of   are given by  
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          is the complete gamma function and 
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          is the lower incomplete gamma function. 

 

4. THE OLiFr PROPERTIES 
 

 In this section, we derive some mathematical properties of the OLiFr distribution 

including ordinary and incomplete moments, moment generating function and order 

statistics.  
 

4.1 Ordinary and Incomplete Moments 

 The  th ordinary moment of   is given by 
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 From equation (8), we have the mean of   with    . 
 

 The skewness and kurtosis measures can be evaluated from the ordinary moments 

using well-known relationships. 
 

 The  th incomplete moment of the OLiFr distribution is defined by  
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 Using equation (7), we can write   
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 The first incomplete moment, say   ( )  follows from the above equation with    . 

  ( ) has an important application related to the Bonferroni and Lorenz curves. These 

curves are very useful in economics, demography, insurance, engineering and medicine. 
 

 Another application of   ( ) is related to the mean residual life and the mean 

inactivity time defined by   ( )  ,    ( )-  ( )    and   ( )      ( )  ( ), 
respectively. 

 

4.2 Moment Generating Function 

 Afify et al. (2016) derived the moment generating function (mgf) of the Fréchet 

distribution,  (     ), given by (1) and (2). 
 

 By setting      , we can write  
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 Using the exponential series for the first exponential  
 

 (     )     ∑  

 

   

  

  
∫  
 

 

         [ (  ) ]    

 

 Calculating the integral, we obtain  
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 Consider the Wright generalized hypergeometric function defined by  
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 Hence, we can write  (     ) as  
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 Using equations (7) and (9), the mgf of  , denoted by  ( ), comes out as  
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4.3 Order Statistics 

 Let         be a random sample of size   from the OLiFr distribution and 

 ( )    ( ) be the corresponding order statistics. Then, the pdf of the  th order statistic 

    , say     ( ), is given by  
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 Gomes-Silva et al. (2017) derived a simple formula for the  th order statistic of the 

OLi-G family. 
 

 According to Gomes-Silva et al. (2017), the pdf of the  th order statistic can be 

expressed as 
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 Taking  ( ) and  ( ) in equation (11) to be the cdf and pdf of the Fréchet 

distribution, then equation (11) reduces to 
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 The last equation can be rewritten as  
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where               (       ) and         ( ) denotes the Fréchet density 

function with shape parameters   and scale parameter  (       )   . Hence, the 

pdf of the OLiFr order statistics is a linear mixture of Fréchet pdfs. Based on equation 

(12), we can easily derive some properties of      from those Fréchet properties. 
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 For example, the  th moment of      is given (for    ) by 
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5. ESTIMATION AND SIMULATION 
 

 In this section, we consider the estimation of the unknown parameters for the OLiFr 

from complete samples only by maximum likelihood. We investigate the MLEs of the 

parameters of the OLiFr(     ) model. Let   (       ) be a random sample from 

this model with unknown parameter vector   (     ) . 
 

 The log-likelihood function for  , say    ( ), is given by  
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 The above equation can be maximized either directly by using the R (optim function), 

SAS (PROC NLMIXED sub-routine), Ox program (MaxBFGS) or by solving the 

nonlinear likelihood equations obtained by differentiating it. 
 

 The score vector is given by  ( )  
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 We can obtain the estimates of the unknown parameters by setting the score vector to 

zero,  ( ̂)   . By solving these equations simultaneously gives the MLEs  ̂  ̂ and  ̂. 

These estimates can be obtained numerically using iterative techniques such as the 
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Newton-Raphson algorithm. For the OLiFr distribution, all the second-order derivatives 

exist. 
 

 For interval estimation of the model parameters, we require the     observed 

information matrix  ( )  *   + for          . Under standard regularity conditions, 

the multivariate normal   (   ( ̂)
  ) distribution can be used to construct approximate 

confidence intervals for the model parameters. Here,  ( ̂) is the total observed 

information matrix evaluated at  ̂. Then, approximate    (   )  confidence intervals 

for the model parameters can be determined in the usual way of the first-order asymptotic 

theory. 
 

 Here, the simulation study is conducted to evaluate the performance of MLES of the 

parameters of OLiFr distribution. The simulation results are evaluated based on the 

following measures: biases, mean square errors (MSE), coverage probability (CP) and 

average length (AL). We generate         samples of size                from 

OLiFr distribution with             and      . The MLEs of the parameters are 

obtained for each generated sample. The corresponding standard errors are obtained by 

inverting the observed information matrix. The estimated biases, MSEs are given by 
 

    ̂ ( )  
 

 
∑(  ̂   ) 

 

   

   ̂ ( )  
 

 
∑(  ̂   )
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where   ̂  is the stanrdard error of the MLEs. Figure 4 displays the simulation results for 

the above measures. As seen from Figure 3, when the sample size increases, biases and 

MSEs approach to zero. This fact reveals the consistency property of the MLES. The CP 

is near to 0.95 for all parameters. Moreover, when the sample size increases, AL 

decreases for all cases.  
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Figure 4: Estimated CPs, Biases, MSEs and ALs for Selected Parameter Values 

 

6. APPLICATIONS 
 

 In this section, we present two applications of the OLiFr distribution using real data 

sets. We shall compare the fit of the OLiFr distribution with the Kumaraswamy Fréchet 

(KFr), exponentiated Fréchet (EFr), beta Fréchet (BFr), gamma extended Fréchet (GEFr), 

transmuted Marshall-Olkin Fréchet (TMOFr), transmuted Fréchet (TFr) and Fréchet (Fr) 

distributions with corresponding pdfs (for    ): 
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 The parameters of the above densities are all positive real numbers except for the 

TMOFr and TFr distributions for which | |   . 
 

 The first data set represents the exceedances of flood peaks (in   /s) of the Wheaton 

River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for 

the years 1958-1984, rounded to one decimal place. The data are:  

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 

25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 

11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 

10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 

64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. 
 

 The second data set is on breaking stress of carbon fibres (in Gba) given by Nichols 

and Padgett (2006). The data are:  

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 

3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 

2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 

3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 

2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 

1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 

1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 

1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65. 
 

 In order to compare the fitted distributions, we consider the following criteria:  

the    ̂ (Maximized Log-Likelihood), AIC (Akaike Information Criterion), CAIC 

(Consistent Akaike Information Criterion), BIC (Bayesian Information Criterion), HQIC 

(Hannan-Quinn Information Criterion), Anderson-Darling (  ) and Cramér-Von Mises 

(  ) statistics. The model with minimum values for these statistics could be chosen as 

the best model to fit the data. 

 

  



A New Three-Parameter Fréchet Distribution: Properties and Applications 452 

Table 1 

Goodness-of-Fit Statistics for Wheaton River Data 

Model                             

OLiFr 503.440 509.440 509.793 512.159 516.270 0.13671 0.78090 

KFr 506.005 514.005 514.602 517.630 523.112 0.17337 0.97379 

EFr 512.243 518.243 518.596 520.962 525.073 0.24225 1.37968 

BFr 514.765 522.765 523.362 526.39 531.872 0.28585 1.6124 

GEFr 514.651 522.651 523.248 526.277 531.758 0.28449 1.60447 

TMOFr 515.440 523.440 524.037 527.066 532.547 0.30523 1.6929 

TFr 529.984 535.984 536.337 538.703 542.814 0.45818 2.63602 

Fr 534.038 538.038 538.212 539.851 542.591 0.48147 2.80181 

 

Table 2 

Goodness-of-Fit Statistics for Breaking Stress of Carbon Fibre Data 

Model    ̂                         

OLiFr 288.300 294.300 294.55 297.463 302.115 0.08634 0.4679 

EFr 289.697 295.697 295.947 298.861 303.513 0.55798 0.10372 

KFr 289.059 297.059 297.480 301.276 307.479 0.09585 0.51495 

BFr 303.133 311.133 311.554 315.350 321.553 0.25137 1.39536 

GEFr 303.960 311.960 312.381 316.178 332.381 0.25872 1.43853 

TMOFr 301.973 309.973 310.394 314.190 320.393 0.2376 1.26771 

Fr 344.308 348.308 348.432 350.417 353.519 0.54849 3.13643 

TFr 344.475 350.475 350.725 353.638 358.290 0.55598 3.17823 

 
 Tables 1 and 2 provide the values of the MLEs and their corresponding standard 
errors (in parentheses) of the model parameters, whereas the values of these statistics for 
the fitted models to both data sets are listed in Tables 3 and 4, respectively.  
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Figure 5: The Fitted pdfs of the OLiFr Model and  

Other Models for Wheaton River Data 

 

 

Table 3 

MLEs and the Corresponding SEs (Given in Parentheses) for Wheaton River Data  

Model Estimates 

Fr 2.8790 0.6521 
  

(   ) (0.553) (0.054) 
  

OLiFr 0.7394 0.6087 0.3929 
 

(     ) (0.842) (0.058) (0.297) 
 

EFr 391.92 0.2677 14.442 
 

(     ) (398.1) (0.033) (6.62) 
 

TFr 1.5083 0.7107 -0.7289 
 

(     ) (0.437) (0.059) (0.234) 
 

KFr 6.3401 0.1332 6.6065 478.30 

(       ) (0.011) (1.6 10
-4

) (0.011) (0.132) 

BFr 38.2262 0.1356 11.712 30.316 

(       ) (118.5) (0.082) (20.38) (34.14) 

GEFr 40.4813 0.1345 35.739 11.735 

(       ) (129.17) (0.081) (42.97) (20.23) 

TMOFr 0.1300 1.1923 107.79 -0.0168 

(       ) (0.169) (0.121) (195.8) (0.559) 

 

 The plots of the fitted OLiFr pdf and other fitted pdfs, for both data sets, are displayed 

in Figures 5 and 6. Figures 7 and 8 display the PP plots and estimated cdfs for the fitted 

models, respectively. The estimated cdfs, to both data sets, for the competitive models are 

shown in Figures 9 and 10. 
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Figure 6: The Fitted pdfs of the OLiFr Model and other Models  

for Breaking Stress of Carbon Fibre Data 

 

 

Table 4 

MLEs and their Standard Errors (in Parentheses)  

for Breaking Stress of Carbon Fibre Data 

Model Estimates 

Fr 1.8705 1.7766 
  

(   ) (0.112) (0.113) 
  

OLiFr 208.27 0.4200 435.21 
 

(     ) (246.8) (0.074) (494.9) 
 

EFr 69.148 0.5019 145.32 
 

(     ) (57.34) (0.08) (122.9) 
 

TFr 1.9315 1.7435 0.0819 
 

(     ) (0.097) (0.076) (0.198) 
 

KFr 2.0556 0.4654 6.2815 224.18 

(       ) (0.071) (0.007) (0.063) (0.164) 

BFr 1.6097 0.4046 22.014 29.761 

(       ) (2.498) (0.108) (21.43) (17.47) 

GEFr 1.3692 0.4776 27.645 17.458 

(       ) (2.017) (0.133) (14.13) (14.81) 

TMOFr 0.6496 3.3313 101.92 0.2936 

(       ) (0.068) (0.206) (47.62) (0.270) 
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Figure 7: PP Plots for for Wheaton River Data 
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Figure 8: PP plots for Breaking Stress of Carbon Fibre Data 

 

 
Figure 9: Fitted cdfs on Empirical cdf for Wheaton River Data 
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Figure 10: Fitted cdfs on Empirical cdf for Breaking Stress of Carbon Fibre Data 

 

 Tables 1 and 2 compare the OLiFr model with the KFr, EFr, BFr, GEFr, TMOFr,  

TFr and Fr distributions. Its noted that the proposed model has the lowest values for the 

   ,     ,     ,    ,    and    statistics among all fitted models. So, the OLiFr 

model can be chosen as the best model for both data sets.Moreover, the Kolmogorov-

Smirnov (K-S) statistic for OLiFr distribution is obtained for both data sets. The K-S 

statistic of OLiFr distribution for first data set is 0.0964 and corresponding p-value is 

0.5151. The K-S statistic of OLiFr distribution for second data set is 0.0707 and 

corresponding p-value is 0.6988. The results of K-S reveal that the OLiFr distribution 

provides superior fits to used data sets. Furthemore, the plots in the Figures from  

3 through 8 reveal that the OLiFr distribution gives a better fit than other nested and  

non-nested models for both data sets. 

 

7. CONCLUSION 
 

 In this paper, we propose a new three-parameter model called the odd Lindley Fréchet 

(OLiFr) distribution, which extends the Fréchet distribution. The OLiFr pdfcan be 

expressed as a linear mixture of Fréchet densities. We derive explicit expressions for its 

ordinary and incomplete moments, generating function and order statistics. The model 

parameters are estimated by maximum likelihood. By means of two real data sets we 

prove that the new model provides better fits than some other well-known competitive 

models. 
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