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ABSTRACT

In this article, we propose a new three-parameter Fréchet distribution named the Odd
Lindley Fréchet distribution. The new model can be expressed as a linear mixture of
Fréchet densities. We provide some of its mathematical properties. Theestimation of the
model parameters is performed by the maximum likelihood method.The importance and
usefulness of the proposed distribution for modeling data are illustrated using two real
data sets by comparison with some other extentions of the Fréchet distribution.
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1. INTRODUCTION

The Fréchet distribution, was introduced by Fréchet (1924), (also known as type Il
extreme value distribution) is one of the important distributions in extreme value theory
and it has applications ranging from accelerated life testing through to earthquakes,
floods, horse racing, rainfall, queues in supermarkets, wind speeds and sea waves.
Further details about the Fréchet distribution and its applications can be explored in Kotz
and Nadarajah (2000), Harlow (2002), Zaharim et al. (2009) and Mubarak (2011).

The statistical literature contains many generalizations of the Fréchet distribution. For
example, the exponentiated Fréchet (Nadarajah and Kotz, 2003), the beta Fréchet
(Nadarajah and Gupta, 2004 and Barreto-Souza et al., 2011), the transmuted Fréchet
(Mahmoud and Mandouh, 2013), the Marshall-Olkin Fréchet (Krishna et al., 2013), the
gamma extended Fréchet (Silva et al., 2013), the transmuted exponentiated Fréchet
(Elbatal et al., 2014), the transmuted Marshall-Olkin Fréchet (Afify et al., 2015), the
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Weibull Fréchet (Afify et al., 2016), the beta exponential Fréchet (Mead et al., 2017) and
the modified Fréchet (Tablada and Cordeiro, 2017) distributions.

The cumulative distribution function (cdf) of the Fréchet distribution is given by
(for x > 0)
o\ P
G(x;a,B) =exp [— (;) ] 1)
The corresponding probability density function (pdf) of (1) is
o\P
9(6a,B) = afxlexp |- (2)'], @
where a > 0 is a scale parameter and 8 > 0 is a shape parameter.

Let g(x;¢) and G(x;{) denote the density and cumulative functions of a baseline
model with parameter vector . Gomes-Silva et al. (2017) proposed a new family of
distribution called the Odd Lindley-G (OLi-G) family.

The cdf of the OLi-G family is given by

R [152?;)()
F(x;0,0) = 1+9f T+ edt
0
4 14+6-6(x0) -0 G(x;9)
=1 - Ton-emn &P [1—c<x:o]' )

where 6 is a positive shape parameter.

An easy interpretation of the above family can be given as follows. Let Y be a
lifetime random variable having a certain a continuous cdf G(x;{). The odds ratio
that an individual (or component) following the lifetime Y will die (failure) at time x is
G(x;0)/G(x; Q). Consider that the variability of this odds of death is represented by the
random variable X and assume that it follows the Lindley model with scale 6. We can
write Then, we have P(Y < x) = P[X < G(x;{)/G(x;{)] = F(x;6,{), which is just
given by (3).

The OLI-G density function is given by

_ _ 0% g =6 630
F(x:6.9) = T s P L—a(x;c)]' “

A random variable X with pdf (4) is denoted by X~OLi-G(6, {).

The rest of this article is organized as follows. Section 2 is devoted to define the
OLiFr distribution and provide some plots for its pdf and hazard rate function (hrf).
Section 3 deals with the derivation of a useful linear representation for the OLIiFr density.
In Section 4, we obtain some mathematical properties of the OLiFr distribution
including ordinary and incomplete moments, moment generating function and order
statistics. The maximum likelihood estimates (MLEs) of the unknown parameters
are provided in Section 5. In Section 6, the flexibility of the OLiFr distribution is
proved empirically by means of two applications to real data. Finally, we provide some
conclusions in Section 7.
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2. THE OLIiFr DISTRIBUTION

In this section, we define the OLiFr distribution. By inserting the cdf (1) into equation
(3), we obtain the cdf of OLiFr distribution (for x > 0)

o+fr-enol-(2)°|} ~oexp|-(2)’|

F(x)=1- (1+9){1—exp[—(%)ﬁ]} exp 1—exp[—(%)ﬁ] . (5)
The pdf corresponding to (5) is
Zx__lex—gﬁ —0Oex; —EE
PO i 1 P e ©)

oo (-eo[-©)]

where « is a scale parameter and 8 and 6 are shape parameters representing the different
patterns of the OLiFr distribution. Henceforth, we denote a random variable X having pdf
(6) by X~OLiFr(6, a, B8).

The hrf and cumulative hazard rate function (chrf) of X are defined by
B
20,8, —B-1 _(%
0“Barx exp [ (x) ]
B B>
(0+fr-ew [~ Pl -ew|-C)')

B B
0 + {1 — exp [— (%) ]} —6exp [— (%) ]
exp

B B

1+0) {1 — exp [— (%) ]} 1—exp [— (g) ]
respectively. Figure 1 shows some plots of the OLiFr density for selected values of «, 8
and 6. The density plots indicate that the OLiFr distribution can be skewed to the left and
to the right with small and large values for the skewness and kurtosis measures. The plots
of the OLiFr hrf for some parameter values given in Figure 2 reveal that this function can

be unimodal, decreasing or increasing, depending on the parameter values. Moreover,
Figure 3 displays the hrf regions of OLiFr distribution for a = 1.

h(x) =

and

H(x) = =In

3. LINEAR REPRESENTATION

In this section, we derive a useful expansion for the OLiFr density function in terms
of Fréchet densities.

Applying the exponential series, the OLi-G pdf in equation (4.4), reduces to

_g(x) O (-Dkek?

146 k!
k=0

f() GO [1 = G

The generalized binomial expansion is defined by
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Figure 1: The pdf Plots of the OLiFr Distribution for Some Parameter Values
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The hrf Regions of the OLiFr Distribution for a = 1.



Mahmoud M. Mansour et al. 445

T+
1-2 *’=Z YO

i=0

Applying the above expansion to [1 — G(x)]~%~3, we can write

g(x) < (=D*O*2r(k +j + 3)

G k+i.
1+0 L~ KjIT(k+3) )
J=

fx) =
Taking G(x) and g(x) in the last equation to be the cdf and pdf of the Fréchet
distribution in equations (1) and (2), we have

BaPf (—Dk0*+2r(k +j + 3)
1+6 £ k'jIT(k + 3)
k,j=0

f) = exp[ (e+j+1) (< )B]

Then, the pdf of the OLiFr can be rewritten as

flx) = Zf,j:o bk,jhk+j+1(x)» (7)
where
_— (—D*0** I (k + j + 3)
KT kjr(1 4+ 0)(k +j + DIk + 3)

and hy,j4q(x) is the Fréchet density with shape parameter f and scale parameter
a(k +j + 1)'/F. Equation (7) reveals that the OLiFr density can be written as a linear
combination of Fréchet densities. So, several of its mathematical properties can be
obtained from those of the Fréchet distribution and equation (7).

Let W be a random variable having the Fréchet distribution (2) with parameters
a and B. For r < 8, the nth ordinary and incomplete moments of W are given by

o = " T(1 —n/B) and @, () = a™y(1 —n/B, (a/D)F),

respectively, where I'(a) = fow y%le7¥dy is the complete gamma function and
v(a,z) = foz y%le~¥dy is the lower incomplete gamma function.

4. THE OLiFr PROPERTIES

In this section, we derive some mathematical properties of the OLiFr distribution
including ordinary and incomplete moments, moment generating function and order
statistics.

4.1 Ordinary and Incomplete Moments
The nth ordinary moment of X is given by

W, = E(X™) = Z bk,f Xy j1 ().
k,j=0

Forn < B, we obtain

n = Zicj=o bja(k +j+ )FL (A —n/p). (8)
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From equation (8), we have the mean of X withn = 1.

The skewness and kurtosis measures can be evaluated from the ordinary moments
using well-known relationships.

The nth incomplete moment of the OLiFr distribution is defined by

t

on(®) = | x"f@dx

Using equation (7), we can write

i t
o = Y by [ i)
K,j=0 0
Then, we have (for n < B),
N . z . anB
()= ) bgank+j+ Dy (1=n/B,(+j+D(3) ).
k,j=0

The first incomplete moment, say ¢, (t), follows from the above equation with n = 1.
¢ (t) has an important application related to the Bonferroni and Lorenz curves. These
curves are very useful in economics, demography, insurance, engineering and medicine.

Another application of ¢,(t) is related to the mean residual life and the mean
inactivity time defined by m,(¢t) = [1 — @, (t)]/R(t) — t and M, (t) =t — @, (t)/F (),
respectively.

4.2 Moment Generating Function
Afify et al. (2016) derived the moment generating function (mgf) of the Fréchet
distribution, M(¢t; a, ), given by (1) and (2).

By setting y = x~1, we can write
© t

M(t;a, B) = Ba¥ J exp (;) yP~texp[—(ay)F]dy.

0

Using the exponential series for the first exponential

M(t; a,B) = Baf Z %J- yP~mLexp|—(ay)f]|dy.
m=0 o

Calculating the integral, we obtain

Consider the Wright generalized hypergeometric function defined by
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(@A), o (@ Ap) 1 N 1= D(ag + Am) xm
p'¥q [(51,31), o (B By)’ x] B nZo H?=1 r(p; + Bjn) n!’

Hence, we can write M(t; a, B) as
_p-1
Mt a,B) = ¥o [V 7P ] ©
Using equations (7) and (9), the mgf of X, denoted by M (t), comes out as
=2 _p-1
M(t) = Z by 1% [ LT e+ j+ VA,
k,j=0

4.3 Order Statistics
Let X;,...,X,, be a random sample of size n from the OLiFr distribution and
X1y, -, X(my b€ the corresponding order statistics. Then, the pdf of the ith order statistic

Xim» S8Y fin(x), is given by
fin() = o f@OF G L= F@I™ (10)

Gomes-Silva et al. (2017) derived a simple formula for the ith order statistic of the
OLi-G family.

According to Gomes-Silva et al. (2017), the pdf of the ith order statistic can be
expressed as

fin(®) = X p=0 Zi20 7 Vimpg QG ()T +™HP, (11)
where
o nl girm+2 ({+m+p>
P (=D (= D)ml (1 + )\ +m

5 ()

Taking G(x) and g(x) in equation (11) to be the cdf and pdf of the Fréchet
distribution, then equation (11) reduces to

o0 k+n—i ﬁ
a
fim (%) = Z Z VjmpBaPx P lexp [—(j +m+p+1) (;) ]
mp=0 j=0

The last equation can be rewritten as
fin(x) = ?n,p:o Zf:g_l Wj,m,phj+m+p+1(x)' (12)

where wj ., = Vjmp/(+m+p+1) and hjpmyp,41(x) denotes the Fréchet density
function with shape parameters 8 and scale parameter a(j + m + p + 1)*/#. Hence, the
pdf of the OLIiFr order statistics is a linear mixture of Fréchet pdfs. Based on equation
(12), we can easily derive some properties of X;.,, from those Fréchet properties.



448 A New Three-Parameter Fréchet Distribution: Properties and Applications

For example, the sth moment of X;.,, is given (for s < ) by

) k+n—i
E(XS,) = af Z Z Wimp( +m+p + 1D)¥PT(1 = s/B).
mp=0 j=0

5. ESTIMATION AND SIMULATION

In this section, we consider the estimation of the unknown parameters for the OLiFr
from complete samples only by maximum likelihood. We investigate the MLEs of the
parameters of the OLiFr(a, 8,0) model. Let x = (x4, ..., x,) be a random sample from
this model with unknown parameter vector v = (a, 8, 8).

The log-likelihood function for v, say £ = £(v), is given by

¢ =n(logp + Ploga + 2logh —log(1+6)) — (B + 1) z logx;

i=1

Z(x) -3210»%{1_6’“’[ = )]} ei exp[_g()_ﬁ)]ﬁ]

i=1 i=1 1 —exp [

The above equation can be maximized either directly by using the R (optim function),
SAS (PROC NLMIXED sub-routine), Ox program (MaxBFGS) or by solving the
nonlinear likelihood equations obtained by differentiating it.

The score vector is given by Uw) = Then, we have

v Y YNT
(Ba aﬁ ae)

n (o) el (2
%_ﬁ_ﬁiﬂ (%)B+(9—3)§i=1 1—exp[[—(i)ﬁ]]'

n

g; Z+nloga Z logx; — Z (%)Blog <%>
2, (&) e[ (2) s ()
i=1 1—exp [— (xll)ﬁ]
" exp
2_2 6 1+6 Z [ [ }ﬁ]

i=1 1 —exp

Jda a «a

| S}

+(6 -3

and

We can obtain the estimates of the unknown parameters by setting the score vector to
zero, U(D) = 0. By solving these equations simultaneously gives the MLEs &, 8 and 6.
These estimates can be obtained numerically using iterative techniques such as the
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Newton-Raphson algorithm. For the OLiFr distribution, all the second-order derivatives
exist.

For interval estimation of the model parameters, we require the 3 x 3 observed
information matrix J(v) = {J,x;} for r,s = a, 8, 8. Under standard regularity conditions,
the multivariate normal N5(0,J(9)~1) distribution can be used to construct approximate
confidence intervals for the model parameters. Here, J(0) is the total observed
information matrix evaluated at 0. Then, approximate 100(1 — ¢)% confidence intervals
for the model parameters can be determined in the usual way of the first-order asymptotic
theory.

Here, the simulation study is conducted to evaluate the performance of MLES of the
parameters of OLiFr distribution. The simulation results are evaluated based on the
following measures: biases, mean square errors (MSE), coverage probability (CP) and
average length (AL). We generate N = 1,000 samples of size n = 50,55, ...,1000 from
OLiFr distribution with 6 = 0.5, = 0.5 and g = 1.5. The MLEs of the parameters are
obtained for each generated sample. The corresponding standard errors are obtained by
inverting the observed information matrix. The estimated biases, MSEs are given by

n n
- 1O, __ 1
Biase(n) = = Y (& — &), MSE.(n) = > (&~ &)
i=1 i=1

where € = 6, a, 8. The CPs and ALs are given by
1 n
CP.(n) = Nz 1(¢; — 1.95996s;,, € + 1.95996s;, ),
i=1
n

3.919928
AL,(n) = TZ Se;
i=1
where s, is the stanrdard error of the MLEs. Figure 4 displays the simulation results for
the above measures. As seen from Figure 3, when the sample size increases, biases and
MSEs approach to zero. This fact reveals the consistency property of the MLES. The CP
is near to 0.95 for all parameters. Moreover, when the sample size increases, AL
decreases for all cases.
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Figure 4: Estimated CPs, Biases, MSEs and ALs for Selected Parameter Values

6. APPLICATIONS

In this section, we present two applications of the OLiFr distribution using real data
sets. We shall compare the fit of the OLiFr distribution with the Kumaraswamy Fréchet
(KFr), exponentiated Fréchet (EFr), beta Fréchet (BFr), gamma extended Fréchet (GEFT),
transmuted Marshall-Olkin Fréchet (TMOFr), transmuted Fréchet (TFr) and Fréchet (Fr)
distributions with corresponding pdfs (for x > 0):

KFr:f (x; a,B,a,b) = abfalx~F+Vex [—a (g)ﬁ] {1 —ex [—a (z)ﬁ]}b_l ;
. ] ] Yy p x p x ]
e £ 5,6 = 0palx P exp [~ (&) |1 - exp [~ (]}
. ) U ) p x p x )
b-1

o 15 00) = s o[- (§) [fo - e [ )}
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GEFr: f(x;a,8,a,b) = %x—(lﬂl)exp [_ (%)ﬁ] {1 — exp [_ (%)B]}a

TFr: f(x; a,B,b) = BaPx~B+Vexp [— (%)ﬁ] {(b +1) —2bexp [— (g)ﬁ]}

The parameters of the above densities are all positive real numbers except for the
TMOFr and TFr distributions for which |b| < 1.

The first data set represents the exceedances of flood peaks (in m3/s) of the Wheaton
River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for
the years 1958-1984, rounded to one decimal place. The data are:

1.7, 22,144, 1.1, 04, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5,
25.5, 11.6, 14.1, 221, 1.1, 2.5, 144, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0,
11.0,7.3,22.9,1.7,0.1,1.1,0.6,9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4,
10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25,5, 3.4, 11.9, 215, 27.6, 36.4, 2.7,
64.0,1.5,25,27.4,1.0,27.1,20.2,16.8,5.3,9.7, 27.5, 2.5, 27.0.

The second data set is on breaking stress of carbon fibres (in Gba) given by Nichols
and Padgett (2006). The data are:

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,
3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56,
3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68,
2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73,
1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,
1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57,
1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

In order to compare the fitted distributions, we consider the following criteria:
the —27 (Maximized Log-Likelihood), AIC (Akaike Information Criterion), CAIC
(Consistent Akaike Information Criterion), BIC (Bayesian Information Criterion), HQIC
(Hannan-Quinn Information Criterion), Anderson-Darling (4*) and Cramér-Von Mises
(W™) statistics. The model with minimum values for these statistics could be chosen as
the best model to fit the data.
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Table 1
Goodness-of-Fit Statistics for Wheaton River Data
Model —2¢ AlIC CAIC | HQIC BIC w* A”
OLiFr | 503.440 | 509.440 |509.793|512.159 | 516.270 | 0.13671 | 0.78090
KFr | 506.005 | 514.005 |514.602 | 517.630 | 523.112 | 0.17337 | 0.97379
EFr | 512.243 | 518.243 | 518.596 | 520.962 | 525.073 | 0.24225 | 1.37968
BFr | 514.765 | 522.765 | 523.362 | 526.39 | 531.872 | 0.28585 | 1.6124
GEFr | 514.651 | 522.651 | 523.248 | 526.277 | 531.758 | 0.28449 | 1.60447
TMOFr| 515.440 | 523.440 | 524.037 | 527.066 | 532.547 | 0.30523 | 1.6929
TFr | 529.984 | 535.984 |536.337 | 538.703 | 542.814 | 0.45818 | 2.63602
Fr 534.038 | 538.038 | 538.212 | 539.851 | 542.591 | 0.48147 | 2.80181
Table 2

Goodness-of-Fit Statistics for Breaking Stress of Carbon Fibre Data
Model | —22 AlC CAIC | HQIC BIC wr A*
OLiFr | 288.300 | 294.300 | 294.55 | 297.463 | 302.115 | 0.08634 | 0.4679
EFr | 289.697 | 295.697 | 295.947 | 298.861 | 303.513 | 0.55798 | 0.10372
KFr | 289.059 | 297.059 |297.480 | 301.276 | 307.479 | 0.09585 | 0.51495
BFr | 303.133 | 311.133 | 311.554 | 315.350 | 321.553 | 0.25137 | 1.39536
GEFr | 303.960 | 311.960 | 312.381 | 316.178 | 332.381 | 0.25872 | 1.43853
TMOFr| 301.973 | 309.973 | 310.394 | 314.190 | 320.393 | 0.2376 | 1.26771
Fr 344.308 | 348.308 | 348.432 | 350.417 | 353.519 | 0.54849 | 3.13643
TFr | 344.475 | 350.475 | 350.725 | 353.638 | 358.290 | 0.55598 | 3.17823

Tables 1 and 2 provide the values of the MLEs and their corresponding standard
errors (in parentheses) of the model parameters, whereas the values of these statistics for

the fitted models to both data sets are listed in Tables 3 and 4, respectively.
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Figure 5: The Fitted pdfs of the OLiFr Model and

Other Models for Wheaton River Data

Table 3
MLEs and the Corresponding SEs (Given in Parentheses) for Wheaton River Data
Model Estimates
Fr 2.8790 0.6521
(a, B) (0.553) (0.054)
OLiFr 0.7394 0.6087 0.3929
(a,B,0) (0.842) (0.058) (0.297)
EFr 391.92 0.2677 14.442
(a,B,0) (398.1) (0.033) (6.62)
TFr 1.5083 0.7107 -0.7289
(a, B, b) (0.437) (0.059) (0.234)
KFr 6.3401 0.1332 6.6065 478.30
(a,B,a,b) (0.011) (1.6-10% (0.011) (0.132)
BFr 38.2262 0.1356 11.712 30.316
(a,B,a,b) (118.5) (0.082) (20.38) (34.14)
GEFr 40.4813 0.1345 35.739 11.735
(a,B,a,b) (129.17) (0.081) (42.97) (20.23)
TMOFr 0.1300 1.1923 107.79 -0.0168
(a,B,a,b) (0.169) (0.121) (195.8) (0.559)

The plots of the fitted OLiFr pdf and other fitted pdfs, for both data sets, are displayed
in Figures 5 and 6. Figures 7 and 8 display the PP plots and estimated cdfs for the fitted
models, respectively. The estimated cdfs, to both data sets, for the competitive models are
shown in Figures 9 and 10.
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for Breaking Stress of Carbon Fibre Data

Table 4

MLEs and their Standard Errors (in Parentheses)
for Breaking Stress of Carbon Fibre Data

Model Estimates
Fr 1.8705 1.7766
(a, B) (0.112) (0.113)
OLiFr 208.27 0.4200 435.21
(a,8,6) (246.8) (0.074) (494.9)
EFr 69.148 0.5019 145.32
(a,B,0) (57.34) (0.08) (122.9)
TFr 1.9315 1.7435 0.0819
(a, B, b) (0.097) (0.076) (0.198)
KFr 2.0556 0.4654 6.2815 224.18
(a,B,a,b) (0.071) (0.007) (0.063) (0.164)
BFr 1.6097 0.4046 22.014 29.761
(a,B,a,b) (2.498) (0.108) (21.43) (17.47)
GEFr 1.3692 0.4776 27.645 17.458
(a,B,a,b) (2.017) (0.133) (14.13) (14.81)
TMOFr 0.6496 3.3313 101.92 0.2936
(a,B,a,b) (0.068) (0.206) (47.62) (0.270)
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Figure 10: Fitted cdfs on Empirical cdf for Breaking Stress of Carbon Fibre Data

Tables 1 and 2 compare the OLiFr model with the KFr, EFr, BFr, GEFr, TMOFr,
TFr and Fr distributions. Its noted that the proposed model has the lowest values for the
AIC, CAIC, HQIC, BIC, W* and A" statistics among all fitted models. So, the OLiFr
model can be chosen as the best model for both data sets.Moreover, the Kolmogorov-
Smirnov (K-S) statistic for OLiFr distribution is obtained for both data sets. The K-S
statistic of OLiFr distribution for first data set is 0.0964 and corresponding p-value is
0.5151. The K-S statistic of OLiFr distribution for second data set is 0.0707 and
corresponding p-value is 0.6988. The results of K-S reveal that the OLiFr distribution
provides superior fits to used data sets. Furthemore, the plots in the Figures from
3 through 8 reveal that the OLiFr distribution gives a better fit than other nested and
non-nested models for both data sets.

7. CONCLUSION

In this paper, we propose a new three-parameter model called the odd Lindley Fréchet
(OLiFr) distribution, which extends the Fréchet distribution. The OLiFr pdfcan be
expressed as a linear mixture of Fréchet densities. We derive explicit expressions for its
ordinary and incomplete moments, generating function and order statistics. The model
parameters are estimated by maximum likelihood. By means of two real data sets we
prove that the new model provides better fits than some other well-known competitive
models.
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